Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 2 г. Кировска»

Рассмотрено на ШМО Руководитель ШМО Л.И.Иванова Протокол от 26.08.2019 № 1

Принята на педагогическом совете Протокол от 30.08.2019 № 1

Утверждена приказом директора МБОУ «СОШ № 2 г. Кировска» от 30.08.2019 № 138

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

учебного предмета «Химия»

уровень образования: основное общее (8-9классы) Нормативный срок освоения: 2 года

Разработана Л.И. Ивановой учителем химии и биологии

г. Кировск 2019 год

Планируемые результаты освоения курса

Личностными результатами изучения предмета «Химия» являются следующие умения:

Осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;

Постепенно выстраивать собственное целостное мировоззрение;

Осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;

Оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья; оценивать экологический риск взаимоотношений человека и природы;

Выбирать поступки, нацеленные на сохранение и бережное отношение к природе, особенно живой, избегая противоположных поступков, постепенно учась и осваивая стратегию рационального природопользования.

Метапредметными результатами освоения выпускниками основной школы программы по химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
 - 3) умение генерировать идеи и определять средства, необходимые для их реализации;
- 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
 - 5) использование различных источников для получения химической информации.

Метапредметными результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

Самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта.

Выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели.

Составлять (индивидуально или в группе) план решения проблемы (выполнения проекта).

Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

В диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности.

Выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели.

Самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха.

Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

Анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.

Осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию на основе дихотомического деления (на основе отрицания).

Строить логическое рассуждение, включающее установление причинно-следственных связей.

Создавать схематические модели с выделением существенных характеристик объекта.

Составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).

Вычитывать все уровни текстовой информации.

Уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

Уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

Отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами.

Уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и работа в малых группах, также использование на уроках элементов технологии продуктивного чтения.

Предметные результаты

Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории;
- различать химические и физические явления;
- называть химические элементы;
- определять состав веществ по их формулам;
- определять валентность атома элемента в соединениях;
- определять тип химических реакций;
- называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
- составлять формулы бинарных соединений;
- составлять уравнения химических реакций;
- соблюдать правила безопасной работы при проведении опытов;

- пользоваться лабораторным оборудованием и посудой;
- вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
- получать, собирать кислород и водород;
- распознавать опытным путем газообразные вещества: кислород, водород;
- раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
- характеризовать физические и химические свойства воды;
- раскрывать смысл понятия «раствор»;
- вычислять массовую долю растворенного вещества в растворе;
- приготовлять растворы с определенной массовой долей растворенного вещества;
- называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
- определять принадлежность веществ к определенному классу соединений;
- составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраски индикатора;
- характеризовать взаимосвязь между классами неорганических соединений;
- раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
- определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление», «восстановление»;
- определять степень окисления атома элемента в соединении;
- раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
- составлять полные и сокращенные ионные уравнения реакции обмена;
- определять возможность протекания реакций ионного обмена;
- проводить реакции, подтверждающие качественный состав различных веществ;
- определять окислитель и восстановитель;

- составлять уравнения окислительно-восстановительных реакций;
- называть факторы, влияющие на скорость химической реакции;
- классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;
- распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
- грамотно обращаться с веществами в повседневной жизни
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинноследственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

Содержание рабочей программы по химии в 8 классе (2ч в неделю, всего 68 ч.) Введение (7 ч)

Методы познания в химии: наблюдение, эксперимент, измерение. Источники химической информации: химическая литература, Интернет.

Химия наука о веществах, их свойствах и превращениях. Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в ХУІ в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева. Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты.

Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Демонстрации: Образцы простых и сложных веществ.

Лабораторные опыты: Знакомство с образцами простых и сложных веществ.

Практические занятия: №1.Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами. № 2.«Наблюдения за изменениями, происходящие с горящей свечой.

Тема 1. Атомы химических элементов (10 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов, Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома. Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов. Изменение числа нейтронов в ядре атома образование изотопов.

Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента. Электроны. Строение электронных оболочек атомов химических элементов № 1-20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой - образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементов неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Тема 2. Простые вещества (7 ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ аллотропия. Аллотропные модификации кислорода, фосфора и олова.

Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества миллимоль и кило моль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Тема 3. Соединения химических элементов (14 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак. Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде. Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде. Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества. Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток. Вещества молекулярного я немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доля компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доля вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IY). Способы разделения смесей. дистилляция воды.

Лабораторные опыты. 1. Знакомство с образцами веществ разных классов. 2. Разделение смесей.

Практические занятия №3.Приготовление раствора сахара и определение массовой доли его в растворе.

Тема 4. Изменения, происходящие с веществами (14 ч)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование. Явления, связанные с изменением состава вещества, химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света. Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца. Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды».

Реакции замещения — взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка йода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II) г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода.

Лабораторные опыты. 3. Сравнение скорости испарения воды и спирта по исчезновению их капель на фильтровальной бумаге. 4. Окисление меди в пламени спиртовки или горелки. 5. Помутнение известковой воды от выдыхаемого углекислого газа. 6. Получение углекислого газа взаимодействием соды и кислоты. 7. Замещение меди в растворе хлорида меди (II) железом.

Практические занятия: № 4. «Признаки химической реакции».

Тема 5. Растворение. Растворы. Свойства растворов электролитов (17ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства. Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений. Классификация ионов и их свойства. Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот. Основания, их классификация. диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. движение окрашенных ионов в электрическом поле. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Лабораторные опыты. 8. Реакции, характерные для растворов кислот (соляной или серной).

9. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия). 10. Получение и свойства нерастворимого основания, например, гидроксида меди (II). 11. Реакции, характерные для растворов солей (например, для хлорида меди (II)), 12. Реакции, характерные для основных оксидов (например, для оксида кальция). 13. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

Практические занятия: Практическая работа № 5 «Решение экспериментальных задач».

Содержание рабочей программы по химии в 9 классе (68 ч)

Тема 1.Общая характеристика химических элементов и химических реакций (10 ч)

Характеристика элемента по его положению в Периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и окисления-восстановления.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и Периодическая система химических элементов Д. И. Менделеева.

Химическая организация живой и неживой природы. Химический состав ядра, мантии и земной коры. Химические элементы в клетках живых организмов. Макро- и микроэлементы.

Обобщение сведений о химических реакциях. Классификация химических реакций по различным признакам: «число и состав реагирующих и образующихся веществ», «тепловой эффект», «направление», «изменение степеней окисления элементов, образующих реагирующие вещества», «фаза», «использование катализатора». Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций. Катализаторы и катализ. Ингибиторы. Антиоксиданты.

Демонстрации. Различные формы таблицы Д. И.Менделеева. Зависимость скорости химической реакции от природы реагирующих веществ. Зависимость скорости химической реакции от концентрации реагирующих веществ. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»).

Лабораторные опыты 1. Получение гидроксида цинка и исследование его свойств.

Диагностическая контрольная работа

Тема 2. Металлы (20ч)

Положение металлов в периодической системе химических элементов д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов. Способы получения металлов: пиро-, гидро- и электрометаллургия. Коррозия металлов и способы борьбы с ней.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочноземельных металлов оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды $Fe^2 + u Fe^3 +$. Качественные реакции на $Fe^2 + u Fe^3 +$. Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты. 2. Ознакомление с образцами металлов. 3. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа. 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы $\mathbf{Fe}^2 + \mathbf{u}$ $\mathbf{Fe}^3 + \mathbf{v}$

Практические занятия: 1. Осуществление цепочки химических превращений металлов. 2. Получение и свойства соединений металлов 3. Решение экспериментальных задач на распознавание и получение веществ.

Тема 3. Неметаллы (28ч)

Общая характеристика неметаллов: положение в периодической системе д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

Водород. Положение в периодической системе химических элементов д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Вода. Строение молекулы. Водородная химическая связь. Физические свойства воды. Аномалии свойств воды. Гидрофильные и гидрофобные вещества. Химические свойства воды. Круговорот воды в природе. Водоочистка. Аэрация воды. Бытовые фильтры. Минеральные воды. Дистиллированная вода, ее получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды), их свойства. Качественная реакция на хлорид-ион. Краткие сведения о хлоре, броме, фторе и коде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства к применение. Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народном хозяйстве. Качественная реакция на сульфат-ион.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (Y), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонат-ион.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, алюминием. Вытеснение хлором брома или иода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом. Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. 7. Качественная реакция на хлорид-ион. 8. Качественная реакция на сульфат-ион. 9. Распознавание солей аммония.

10. Получение углекислого газа и его распознавание. 11. Качественная реакция на карбонат-ион. 12. Ознакомление с природными силикатами. 13. Ознакомление с продукцией силикатной промышленности.

Практические занятия: 4. Решение экспериментальных задач по теме «Подгруппа кислорода». 5. Решение экспериментальных задач по теме «Подгруппы азота и углерода». 6. Получение, собирание и распознавание газов.

Тема 4. Обобщение знаний по химии за курс основной школы. (10 час)

Периодический закон и Периодическая система химических элементов Д. И.Менделеева. Физический смысл порядкового номера элемента, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение Периодического закона.

Виды химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; наличие границы раздела фаз; тепловой эффект; изменение степеней окисления атомов; использование катализатора; направление протекания). Скорость химических реакций и факторы, влияющие на нее. Обратимость химических реакций и способы смещения химического равновесия.

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды и гидроксиды (основания, кислоты, амфотерные гидроксиды), соли. Их состав, классификация и общие химические свойства в свете теории электролитической диссоциации.

Учебно-тематический план по курсу химии 8 класса.

	Количество часов				
Наименование разделов и тем	Всего	Уроки	Лабор-	Практи	Контро
			ные	ческие	льные
			работы	работы	работы
Введение	7	5	1	2	
Тема 1. Атомы химических элементов.	10	9			1
Тема 2 Простые вещества.	7	7			
Тема 3. Соединения химических	14	12	2	1	1
элементов.					
Тема 4. Изменения, происходящие с	12	9	5	1	1
веществами.					
Тема 5. Растворение. Растворы.	18	16	6	1	1
Свойства растворов электролитов.					
Всего:	68	59	14	5	4

Учебно-тематический план по курсу химии 9 класса.

	Количество часов					
Наименование разделов и тем	Всего	Уроки	Лабор-	Практи	Контро	
			ные	ческие	льные	
			работы	работы	работы	
Тема 1. Общая характеристика						
химических элементов и химических	10	9	1		1	
реакций.						
Тема 2. Металлы.	20	16	5	3	1	
Тема 3. Неметаллы.	28	24	7	3	1	
Тема 4. Обобщение знаний по химии						
за курс основной школы.	10	9			1	
Всего:	68	58	13	6	4	